Diversidad y composición de la comunidad de nemátodos en cultivos hortícolas y banano

Contenido principal del artículo

William E. Rosas Carrera
M.I. Jiménez Feijoó
P.M. Piedrahita Piedrahita
E.I Álava Hidalgo

Resumen

Los cultivos hortícolas y de musáceas representan una gran importancia económica para el Ecuador. Aunque existen estudios sobre la asociación de nemátodos fitopatógenos y los perjuicios que causan, poco se ha investigado sobre la diversidad y composición de nemátodos en dichos cultivos. El presente estudio evalúa la diversidad, composición y abundancia de la comunidad de nemátodos relacionado con las características físico-químicas del suelo, reporta la diversidad de Shannon H’ y la estructura de la comunidad de nemátodos, a partir de sus grupos tróficos, estructura de la comunidad colonizadores – persistentes (c-p) e índice de madurez (IM). Este trabajo presenta resultados de suelos en plantaciones hortícolas y de banano en las provincias del Azuay (sierra), El Oro y Guayas (costa) respectivamente. Los resultados demostraron promedios en las variables materia orgánica (MO%), temperatura (T°C) y humedad (H%) con diferencias significativas (P<0.05) entre las regiones de muestreo. No se encontraron organismos del grupo trófico micofago en todo el estudio. Géneros como Tylenchus, Helycotylenchus y Pratylenchus, representaron más del 50% del total de las colectadas.  Pero se pudo observar una notable diferencia del grupo trófico predador con una abundancia mayor en la región Costa que en la Sierra. En general, las regiones de cultivo Costa y Sierra tuvieron un impacto considerable en la abundancia y variables físico-químicas. El clima presento un efecto importante en la distribución y diversidad de nemátodos, entre ellos los del grupo trófico predador. La abundancia del grupo trófico herbívoro pudo verse mediada por la presencia del grupo trófico predador.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Rosas Carrera, W. E. ., Jiménez Feijoó , M. ., Piedrahita Piedrahita, . P. ., & Álava Hidalgo , E. (2024). Diversidad y composición de la comunidad de nemátodos en cultivos hortícolas y banano. Centrosur Agraria, 1(21). https://doi.org/10.37959/revista.v1i21.264
Sección
Articles

Citas

Ahmad, W. and Shaheen, A. (2004) 'A redescription of "Nygolaimium menzeli" (Micoletzky, 1925) Heyns, 1968 (Nematoda : Nygolaimina) with designation of its neotype from Costa Rica', Journal of Nematode Morphology and Systematics, 7(2), p. J. Nem. Morph. Syst., 7 (2): 153-157 (2004, publ.

Altamirano-Benavides, M. and YANEZ-MORETTA, P. (2016) 'DNA barcoding (barcoding): a tool for biodiversity research and conservation in Ecuador', La Granja, 23(1), pp. 5-13. doi: 10.17163/lgr.n23.n23.2016.01.

Alvarez-Ortega, S. et al. (2016) 'Sectonema caobangense sp. n. from Vietnam (Nematoda, Dorylaimida, Aporcelaimidae)', Journal of Nematology, 48(2), pp. 95-103. doi: 10.21307/jofnem-2017-014.

do Amaral, A. M. B. et al. (2018) 'Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir', Chemosphere, 191, pp. 876-885. doi: 10.1016/j.chemosphere.2017.10.114.

Andrássy, I. (2010) 'Two new nematode species of the subfamily Brittonematinae (Dorylaimida: Actinolaimidae)', Opuscula Zoologica Instituti Zoosystematici et Oecologici Universitatis Budapestinensis, 41(2), pp. 175-190.

Bardgett, R. D. and Van Der Putten, W. H. (2014) 'Belowground biodiversity and ecosystem functioning', Nature. Nature Publishing Group, pp. 505-511. doi: 10.1038/nature13855.

Bengtsson, J., Ahnström, J. and Weibull, A. C. (2005) 'The effects of organic agriculture on biodiversity and abundance: A meta-analysis', Journal of Applied Ecology, 42(2), pp. 261-269. doi: 10.1111/j.1365-2664.2005.01005.x.

Bhusal, D. R., Tsiafouli, M. A. and Sgardelis, S. P. (2015) 'Temperature-based bioclimatic parameters can predict nematode metabolic footprints', Oecologia, 179(1), pp. 187-199. doi: 10.1007/s00442-015-3316-4.

Bongers, T. (1989) 'The nematodes of the netherlands', Bristish Museum (Natural History), pp. 1,12-24.

Bongers, T. (1990a) 'The maturity index: an ecological measure of environmental disturbance based on nematode species composition', Oecologia, 83(1), pp. 14-19. doi: 10.1007/BF00324627.

Bongers, T. (1990b) 'The maturity index: an ecological measure of environmental disturbance based on nematode species composition', Oecologia, 83(1), pp. 14-19. doi: 10.1007/BF00324627.

Boström, S. (1991) 'Mesorhabditis minuta n. sp. from Greece (Nematoda : Rhabditidae)', Revue de Nématologie, 14(1), pp. 119-122. Available at: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_5/pt5/nemato/31620.pdf.

Brown, A. et al. (2017) 'Bananas and plantains (Musa spp.)', in Genetic Improvement of Tropical Crops. Springer International Publishing, pp. 219-240. doi: 10.1007/978-3-3-319-59819-2_7.

Campos, H. and Caligari, P. D. S. (2017) Genetic improvement of tropical crops, Genetic Improvement of Tropical Crops. Springer International Publishing. doi: 10.1007/978-3-3-319-59819-2.

Carta, L. K. and Skantar, A. M. (2014) 'A Trichodorus (Triplonchida: Trichodoridae) nematode from thrips (Thysanoptera: Panchaetothripinae)', Journal of Nematology, 46(3), pp. 302-308.

Chen, D. et al. (2013) 'Vertebrate herbivore-induced changes in plants and soils: Linkages to ecosystem functioning in a semi-arid steppe', Functional Ecology, 27(1), pp. 273-281. doi: 10.1111/1365-2435.12027.

Dias, J. S. (2012) 'Nutritional Quality and Health Benefits of Vegetables: A Review', Food and Nutrition Sciences, 03(10), pp. 1354-1374. doi: 10.4236/fns.2012.310179.

Dong, K. et al. (2017) 'Soil nematodes show a midelevation diversity maximum and elevational zonation on Mt. Norikura, Japan', Scientific Reports, 7(1). doi: 10.1038/s41598-017-03655-3.

Eisenhauer, N. and Guerra, C. A. (2019) 'Global maps of soil-dwelling nematode worms', Nature. Nature Publishing Group, pp. 187-188. doi: 10.1038/d41586-019-02197-0.

Emery, S. M. et al. (2017) 'Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization', GCB Bioenergy, 9(11), pp. 1644-1656. doi: 10.1111/gcbb.12460.

Fan, K. et al. (2020) 'Crop production correlates with soil multitrophic communities at the large spatial scale', Soil Biology and Biochemistry, 151. doi: 10.1016/j.soilbio.2020.108047.

Ferris, H., Bongers, T. and De Goede, R. G. M. (2001) 'A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept', Applied Soil Ecology, 18(1), pp. 13-29. doi: 10.1016/S0929-1393(01)00152-4.

Gillingham, P. K. et al. (2012) 'The relative importance of climate and habitat in determining the distributions of species at different spatial scales: A case study with ground beetles in Great Britain', Ecography, 35(9), pp. 831-838. doi: 10.1111/j.1600-0587.2011.07434.x.

Girgan, C. et al. (2021) 'Nematodes and the effect of seasonality in grassland habitats of South Africa', Journal of Nematology, 52, pp. 1-22. doi: 10.21307/JOFNEM-2020-118.

De Goede, R. G. M., Bongers, T. and Ettema, C. H. (1993) 'Graphical presentation and interpretation of nematode community structure: c-p triangles', Med. Fac. Landbouww. Univ. Gent, 58(2b), pp. 743-750.

Greco, N. et al. (2020) 'Sustainability of European vegetable and strawberry production in relation to fumigation practices in the EU', Acta Horticulturae, 1270, pp. 203-210. doi: 10.17660/ActaHortic.2020.1270.24.

van den Hoogen, J. et al. (2019) 'Soil nematode abundance and functional group composition at a global scale', Nature, 572(7768), pp. 194-198. doi: 10.1038/s41586-019-1418-6.

Hunt, D. (2008a) Free-living nematodes of Hungary (Nematoda errantia). Vol. 1, Nematology. Budapest, Hungary: Hungarian Natural History Museum. doi: 10.1163/156854108783476395.

Hunt, D. (2008b) Free-living nematodes of Hungary (Nematoda errantia). Vol. 2, Nematology. Vol. 2. Edited by Hungarian Natural History Museum. Budapest, Hungary. doi: 10.1163/156854108783476395.

Hunt, D. (2008c) Free-living nematodes of Hungary (Nematoda errantia). Vol. 3, Nematology. Budapest, Hungary: Hungarian Natural History Museum. doi: 10.1163/156854108783476395.

Inserra, R. N. et al. (2014) 'Hemicriconemoides Species as Crop Damaging Parasitic Nematodes in Florida 1', (223).

Jana, T., Chatterjee, A. and Manna, B. (2008) 'Two new and a known species of the genus Miconchus Andrássy, 1958 (Nematoda: Anatonchidae) from West Bengal, India', Opuscula Zoologica Instituti Zoosystematici et Oecologici Universitatis Budapestinensis, 39(1), pp. 77-90.

Kanzaki, N., Ekino, T. and Masuya, H. (2019) 'Seinura caverna n. Sp. (Tylenchomorpha: Aphelenchoididae), an androdioecious species isolated from bat guano in a calcareous cave', Nematology, 21(2), pp. 207-225. doi: 10.1163/15685411-00003207.

Kergunteuil, A. et al. (2016) 'The Abundance , Diversity , and Metabolic Footprint of Soil Nematodes Is Highest in High Elevation Alpine Grasslands', 4(July), pp. 1-12. doi: 10.3389/fevo.2016.00084.

Kolombia, Y. A. et al. (2017) Morphological and molecular characterisation of Scutellonema species from yam (Dioscorea spp.) and a key to the species of the genus, Nematology. doi: 10.1163/15685411-00003084.

Krebs, J. C. (1999) Ecological methodology BT - Ecological methodology. Second, Ecological methodology. Second. California: Addison Wesley Longman. Available at: papers2://publication/uuid/2800DBA3-DD0C-4EDC-AA60-D993B4E8D780.

Landesman, W. J., Treonis, A. M. and Dighton, J. (2011) 'Effects of a one-year rainfall manipulation on soil nematode abundances and community composition', Pedobiologia, 54(2), pp. 87-91. doi: 10.1016/j.pedobi.2010.10.002.

Leduc, D. and Zhao, Z. Q. (2017) 'Molecular and morphological characterisation of Sphaerolaimus haurakiensis n. sp. (Nematoda, Sphaerolaimidae) from the New Zealand continental shelf', New Zealand Journal of Marine and Freshwater Research, 51(4), pp. 577-590. doi: 10.1080/00288330.2017.1298633.

Liu, T., Hu, F. and Li, H. (2019) 'Spatial ecology of soil nematodes: Perspectives from global to micro scales', Soil Biology and Biochemistry. Elsevier Ltd. doi: 10.1016/j.soilbio.2019.107565.

Luc, M., Sikora, R. A. and Bridge, J. (2005) Plant parasitic nematodes in subtropical and tropical agriculture: Second Edition, Plant Parasitic Nematodes in Subtropical and Tropical Agriculture: Second Edition. doi: 10.1079/9781786391247.0000.

Maffei, D. F. et al. (2016) 'Microbiology of organic and conventionally grown fresh produce', Brazilian Journal of Microbiology. Elsevier Editora Ltda, pp. 99-105. doi: 10.1016/j.bjm.2016.10.006.

Mahato, R. (1997) 'Hemicycliophora biosphaera', 29(3), pp. 329-335.

McCain, C. M. and Grytnes, J.-A. (2010) 'Elevational Gradients in Species Richness', in Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi: 10.1002/9780470015902.a0022548.

Moreno, S. S. and Talavera M. (2013) 'Agri-environmental measures and biodiversity conservation: limitations and future perspectives', Ecosystems, 22(1), pp. 44-49. doi: 10.7818/re.2014.22-1.00.

Mumladze, L. et al. (2015) 'Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus)', Experimental and Applied Acarology, 66(1), pp. 41-51. doi: 10.1007/s10493-015-9893-4.

Ney, L. et al. (2019) 'Sensitivity of nematode community analysis to agricultural management practices and inoculation with local effective microorganisms in the Southeastern United States', Soil Systems, 3(2), pp. 1-16. doi: 10.3390/soilsystems3020041.

Nusrat, T., Anjum, A. and Ahmad, W. (2013) 'Mononchida (nematoda) from silent valley national park, India', Zootaxa, 3635(3), pp. 224-236. doi: 10.11646/zootaxa.3635.3.2.

Odontopharynx, P. and Man, I. De (1989) 'Taxonomy and Postembryonic Stages of the Nematode', 21(2), pp. 189-201.

Pareek, S. (2015) 'Nutritional and Biochemical Composition of Banana (Musa spp.) Cultivars', in Simmonds, M. S. J. and Preedy, V. R. (eds) Nutritional Composition of Fruit Cultivars. San Diego, CA, USA: Academic Press, pp. 49-81. doi: 10.1016/B978-0-12-408117-8.00003-9.

Parvatha, R. P. (2013) Diseases of Horticultural Crops: Nematode Problems and their Management. New Delhi: Scientific Publishers (India).

Pattison, A. B. et al. (2018) 'Soil indicators respond to changes in banana plantation management', Acta Horticulturae, 1196, pp. 147-154. doi: 10.17660/ActaHortic.2018.1196.17.

Phani, V. et al. (2018) 'Characterization of Meloidogyne indica (Nematoda: Meloidogynidae) Parasitizing Neem in India, with a molecular phylogeny of the species', Journal of Nematology, 50(3), pp. 387-398. doi: 10.21307/jofnem-2018-015.

Salas, A. and Achinelly, M. F. (2020) 'Community Structure of Soil Nematodes Associated with the Rhizosphere of Solanum Lycopersicum in a Major Production Area in Argentina: a Case Study Among Agroecosystem Types', Journal of Soil Science and Plant Nutrition, 20(1), pp. 43-54. doi: 10.1007/s42729-019-00099-8.

Sánchez-Moreno, S. (2018) 'Biodiversity and soil health: The role of the soil food web in soil fertility and suppressiveness to soil-borne diseases', Acta Horticulturae, 1196, pp. 95-104. doi: 10.17660/ActaHortic.2018.1196.11.

Sánchez-Moreno, S. et al. (2018) 'Microfaunal soil food webs in Mediterranean semi-arid agroecosystems. Does organic management improve soil health?', Applied Soil Ecology, 125, pp. 138-147. doi: 10.1016/j.apsoil.2017.12.020.

Shokoohi, E. et al. (2013) 'Study of mononchids from Iran, with description of Mylonchulus kermaniensis sp. n. (Nematoda: Mononchida)', Zootaxa, 3599(6), pp. 519-534. doi: 10.11646/zootaxa.3599.6.2.

Sieriebriennikov, B., Ferris, H. and de Goede, R. G. M. (2014) 'NINJA: An automated calculation system for nematode-based biological monitoring', European Journal of Soil Biology, 61, pp. 90-93. doi: 10.1016/j.ejsobi.2014.02.004.

Sivasubramaniam, N., Hariharan, G. and Zakeel, M. C. M. (2020) 'Sustainable management of plant-parasitic nematodes: An overview from conventional practices to modern techniques', in Management of Phytonematodes: Recent Advances and Future Challenges. Springer Singapore, pp. 353-399. doi: 10.1007/978-981-15-4087-5_16.

Suggitt, A. J. et al. (2011) 'Habitat microclimates drive fine-scale variation in extreme temperatures', Oikos, 120(1), pp. 1-8. doi: 10.1111/j.1600-0706.2010.18270.x.

Tahseen, Q. et al. (2013) 'Descriptions of ten known species of the superfamily mononchoidea (Mononchida: Nematoda) from north India with a detailed account on their variations', Zootaxa, 3646(4), pp. 301-335. doi: 10.11646/zootaxa.3646.4.1.

Tahseen, Q. et al. (2016) 'Description of a new species of Acrostichus Rahm 1928 (Nematoda: Diplogastridae) from India with a note on its position and relationship with the congeners', Biodiversity Data Journal, 4(1), pp. e8029-24. doi: 10.3897/BDJ.4.e8029.

Tahseen, Q. and Rajan, P. (2009) Description of Mononchus intermedius sp. n. (Mononchidae: Nematoda), Nematologia Mediterranea. Available at: https://journals.flvc.org/nemamedi/article/view/86998 (Accessed: 4 November 2020).

Todd, T. C., Blair, J. M. and Milliken, G. A. (1999) 'Effects of altered soil-water availability on a tallgrass prairie nematode community', Applied Soil Ecology, 13(1), pp. 45-55. doi: 10.1016/S0929-1393(99)00022-0.

Traunspurger, W. et al. (2017) 'Diversity and distribution of soil micro-invertebrates across an altitudinal gradient in a tropical montane rainforest of Ecuador, with focus on free-living nematodes', Pedobiologia, 62, pp. 28-35. doi: 10.1016/j.pedobi.2017.04.003.

Varela Benavides, I. (2018) 'Abundance, diversity and metabolic footprint of nematode communities in different life zones in the Region Huetar Norte from Costa Rica', Revista de Biologia Tropical, 66(4), pp. 1709-1720. doi: 10.15517/rbt.v66i4.33219.

Vittoz, P. et al. (2010) 'Gradient subalpin-nival de la richesse spécifique des plantes vasculaires, bryophytes et lichens dans les Alpes internes en Suisse', Botanica Helvetica, 120(2), pp. 139-149. doi: 10.1007/s00035-010-0079-8.

Vovlas, N. (1992) 'Taxonomy of Discocriconemella (Nematoda: Crichonematoidea) with a Redescription of D. mauritiensis.', Journal of nematology, 24(3), pp. 391-398.

Wardle, D. A. and Yeates, G. W. (1993) 'The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs', Oecologia, 93(2), pp. 303-306. doi: 10.1007/BF00317685.

WHITEHEAD, A. G. and HEMMING, J. R. (1965) 'A comparison of some quantitative methods of extracting small vermiform nematodes from soil', Annals of Applied Biology, 55(1), pp. 25-38. doi: 10.1111/j.1744-7348.1965.tb07864.x.

van Wyk, J. A. and Mayhew, E. (2013) 'Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide', Onderstepoort Journal of Veterinary Research, 80(1). doi: 10.4102/ojvr.v80i1.539.

Yan, J. et al. (2021) 'Plant genotypic diversity effects on soil nematodes vary with trophic level', New Phytologist, 229(1), pp. 575-584. doi: 10.1111/nph.16829.

Yeates, G. W. et al. (1993) 'Feeding habits in soil nematode families and genera-an outline for soil ecologists.', Journal of nematology, 25(3), pp. 315-31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19279775%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2619405.

Zhao, J. and Neher, D. A. (2014) 'Soil energy pathways of different ecosystems using nematode trophic group analysis: A meta analysis', Nematology, 16(4), pp. 379-385. doi: 10.1163/15685411-00002771.